Submitted to the Integrated Computer-Aided Engineering Journal.

Towards a Tool for Performance Evaluation of Autonomous Vehicle
Navigation in Dynamic, On-Road Environments

Craig Schlenoff*, Jerome Ajot, and Raj Madhavan
National Institute of Standards and Technology (NIST)
100 Bureau Drive, Stop 8230
Gaithersburg, MD 20899
Phone: 301-975-3456, Fax: 301-990-9688

Email: craig.schlenoff@nist.gov, jerome.ajot@nist.gov, raj.madhavan@ieee.org

ABSTRACT

We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving
object prediction (MOP) to assist unmanned ground vehicles in performing path planning within dynamic
environments. In addition to predicting the location of moving objects in the environment, we have
extended PRIDE to generate simulated traffic during on-road driving. In this paper, we explore applying
the PRIDE-based traffic control algorithms for the performance evaluation of autonomous vehicles.
Through the use of repeatable and realistic traffic simulation, one is able to evaluate the performance of an
autonomous vehicle in an on-road driving scenario without the risk involved with introducing the vehicle
into a potentially dangerous roadway situation. In addition, by varying a single vehicle’s parameters (such
as aggressivity), we can show how the entire traffic pattern is affected. We will describe the successes that
have been achieved to date in a simulated environment, as well as enhancements that are currently being

researched and expected in the near future.

Keywords: PRIDE, performance metrics, moving object prediction, traffic simulation

! Corresponding author

drussell
Submitted to the Integrated Computer-Aided Engineering Journal.

1. INTRODUCTION

The field of autonomous navigation systems is continuing to gain traction both with researchers and
practitioners. Funding for research is this area has continued to grow over the past few years, and recent
high profile funding opportunities have started to push theoretical research efforts into practical use, as
evidenced by the interest spurred by the DARPA Grand Challenge [1]. Autonomous navigation systems in
this context refer to embodied intelligent systems that can navigate fairly independently without human

supervision.

For an autonomous vehicle system to operate in static and dynamic environments, the planner is of
paramount importance. Local path planning methods typically utilize cost-based planners and have found
their widespread use in dynamic environments. Traditionally, these planners decompose the world into
discrete, evenly spaced locations and then assign costs for the occupancy of these locations and for
transitioning from one location to another. These costs are often calculated assuming that the objects in the
environment are static, since limited information tends to be available about the future location of unknown
dynamic objects. To successfully navigate and accomplish missions in dynamic environments, this
assumption is overly restrictive; information about dynamic objects should be made available to the

planner.

Many believe that the DEMO 11l eXperimental Unmanned Vehicle (XUV) effort represents the state-of-
the-art in autonomous off-road driving [25]. This effort developed and demonstrated new autonomous
vehicle technology emphasizing perception, navigation, intelligent system architecture, and planning. It
should be noted the DEMO |11 XUV has only been tested in static, closed-course environments. It has not
been tested in on-road driving situations, which include pedestrians and oncoming traffic. There have been
experiments performed with autonomous vehicles during on-road navigation. Perhaps the most successful
has been that of Dickmanns [8] as part of the European Prometheus project in which an autonomous
vehicle performed a trip from Munich to Odense in Germany (over 1,600 km) at a maximum speed of 180

km/hr. Although the vehicle was able to identify and track other moving vehicles in the environment, it

could only make basic predictions of where those vehicles were expected to be at points in the future,

considering the external vehicles’ current velocity and acceleration.

What is missing from all of these experiments is a level of situation awareness of how other vehicles in the
environment are expected to behave considering the situation in which they find themselves. When humans
drive, we often have expectations of how each object in the environment will move based upon the
situation. For example, when a vehicle is approaching an object that is stopped in the road, we expect it to
slow down and stop behind the object or try to pass it. When we see a vehicle with its blinker on, we expect
it to turn or change lanes. When we see a vehicle traveling behind another vehicle at a constant speed, we
expect it to continue traveling at that speed. The decisions that we make in our vehicle are largely a

function of the assumptions we make about the behavior of other vehicles.

To date, the authors are not aware of any autonomous vehicle efforts that account for this information when
performing path planning. To address this need, we have developed a framework, called PRIDE
(PRediction In Dynamic Environments) that provides an autonomous vehicle’s planning system with
information that it needs to perform path planning in the presence of moving objects [22]. Even though the
theoretical foundations of the framework are in place, the underlying implementational details are a subject
of on-going research. In this paper, we describe how we leveraged the algorithms in the PRIDE framework
to simulate traffic during on-road driving. The primary contributions of this paper are the discussion of the
PRIDE framework, the detailing of the algorithms that contribute to the moving object predictions, and an
exposition of how this approach could be applied to assigning performance metrics to autonomous vehicles.
It should be noted that this effort is not addressing the issue of detecting moving objects. This is a very
difficult problem and one that is being addressed by other efforts. In this effort, we are taking the
identification of moving objects as an input, and inferring their possible future location based upon

contextual information about the object and the environment.

The paper is structured as follows: In Section 2, we survey related work in moving object prediction (MOP)

and traffic simulation areas. In Section 3, we describe the PRIDE framework and show how we apply it to

moving object prediction. In Section 4, we explain how we use the PRIDE framework algorithms for traffic
simulation. In Section 5, we show how the traffic simulation can be used to associate performance metrics
to autonomous vehicles. Section 6 provides experimental results and Section 7 concludes the paper with

suggestions for further research.

2. RELATED WORK

Because moving object detection is such a difficult problem, there has been relatively little research in
moving object prediction. Firby [13] uses NaTs (navigation templates) as a symbolic representation of
static and dynamic sensed obstacles to drive a robot’s motors to respond quickly to moving objects.
Gueting [14] extends database structures to allow for the representation of dynamic attributes (i.e., ones
that change over time) and also extends the database’s query language to allow for easier querying of the
values of dynamic attributes. Singhal [26] introduces the concept of dynamic occupancy grids which allows
each cell to have a state vector which contains information such as a probabilistic estimate of the entity’s
identity, location, and characteristics (such as velocity, acceleration) along with global probability
distribution functions. Nagel [15] has performed some research on moving object prediction during on-
road driving based upon the concept of generally describable situations, fuzzy logic, and situation graph
trees. However, based on the literature, Nagel has not tried to project out what the next actions of the
moving object will be and has not assigned probabilities to those actions. Dickmanns [9] has performed
research on situation assessment and intention recognition for on-road driving using a Dynamic Objects
Database. RRTs (Rapidly-exploring Random Trees) is a popular approach for path planning problems that
involve obstacles. They have been applied to a number of areas including collision-free control of virtual
humans [17] and Mars exploration vehicles [27]. However, this approach does not take into account

situation recognition.

There have also been agent architectures that have been created to address, among other things, dealing
with moving objects. Ferguson [12] developed an Al software architecture suitable for controlling and

coordinating the actions of a rational, autonomous, resource-bounded agent embedded in a partially

structured, dynamic, multi-agent world. Albus [4] created the RCS (Real-time Control System) architecture
which supports the specification and inter-communication of agents which could be applied in dynamic
environments. RCS has been used successfully in a number of domains, including controlling machine

tools, post office package handling, and autonomous vehicles [2].

Statistical methods for estimating obstacle locations using statistical features have been proposed by other
researchers such as the Hidden Markov Models (HMMs) to predict obstacle motion [28], Poisson
distribution to describe the probability of collision with obstacles [24], autoregressive models for one-step
ahead prediction of moving obstacles [10] or probability of occupancy of cells in grid maps [20]. The
principal disadvantages of these methods are that they are computationally intensive thus precluding real-

time implementations. They have also only been implemented for 2D polygonal indoor environments.

In addition to moving object prediction, there are few distinctive techniques for planning around moving
objects. In [6], an implementation of genetic algorithms called Ariadne’s Clew is used to perform path
planning. Inspired by Probabilistic-Roadmap Methods (PRM), the planner described in [19] samples the
state and time space of a robot by picking control inputs at random in order to compute a roadmap that
captures the connectivity of the space. Balakirsky [5] uses a combined logic-based and cost-based planning
approach in order to allow for the creation of logic-constrained, cost-optimal plans with respect to dynamic
environments, user objectives, and constraints. Ratering and Gini [21] use hybrid potential field, to
navigate a robot in situations in which the environment is known except for unknown and possibly moving
obstacles. Kindel [19] developed a randomized mation planner for robots that must achieve a specified goal
under kinematic and/or dynamic motion constraints while avoiding collision with moving obstacles with

known trajectories.

As for traffic simulation, most of the work in the literature dealing with drivers’ actions and predicted
behavior has been performed by psychologists in an attempt to explain drivers' behaviors and to identify the

reason for certain disfunctions. There have been a few efforts that have tried to simulate traffic patterns.

One of the more prominent ones in the literature is ARCHISM [7,11], but even this effort is based upon
driving psychology studies. These traffic simulations use laws that can be applied for a specific
environment or a specific situation. Some of those postulates can be expanded to generic situations.
Additional work preformed at the Sharif University of Technology of Tehran [16] is based on two
assumptions: the maximum speed on a road segment and the potential danger that could be incurred by
traversing this road segment. These assumptions and concepts allow the simulation program to create a

rank of actions the vehicle can execute based on the danger that could be incurred.

The work described in this paper is different in that it introduces a novel way to perform moving object
prediction based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction
algorithms into a single, unifying framework. The lower levels of the framework utilize estimation
theoretic short-term predictions based upon an extended Kalman filter while the upper levels utilize a

probabilistic prediction approach based upon situation recognition with an underlying cost model.

3. THE PRIDE FRAMEWORK

3.1. Overview

We are using the 4D/RCS (Real-Time Control System) reference model architecture [3] as the basis in
which to apply the representational approaches that are being developed in this effort. 4D/RCS was chosen
due to its explicit and well-defined world modeling capabilities and interfaces, as well as its multi-
resolution, hierarchical planning approach. Specifically, 4D/RCS allows for planning at multiple levels of
abstraction, using different planning approaches as well as supporting inherently different world model
representations. By applying this architecture, we can ensure that the representations being developed for
moving objects can accommodate different types of planners that have different representational

requirements.

The RCS architecture supports multiple behavior generation (BG) systems working cooperatively to
compute a final plan for the autonomous system. At each successively lower level in the hierarchy, the
spatial and temporal resolution of the individual BG systems increases while the amount of time allowed
for each BG system to compute a solution decreases. In addition to multiple BG systems, multiple world
models are supported with each world model’s content being tailored to the systems that it supports (in this
case the different BG systems). At each successively lower level in the hierarchy, the resolution of the
world model increases to support the needs of the BG. To align with the hierarchy present within 4D/RCS,

it is necessary for moving objects to be represented differently at the different levels of the architecture.

To support this requirement, NIST has developed the PRIDE (PRediction In Dynamic Environments)
framework. This framework supports the prediction of the future location of moving objects at various
levels of resolution, thus providing prediction information at the frequency and level of abstraction
necessary for planners at different levels within the hierarchy. To date, two prediction approaches have

been applied to this framework.

3.2 Prediction Algorithms

3.2.1. Lower-level Prediction Algorithms

At the lowers levels, we utilize estimation theoretic short-term predictions via an extended Kalman filter-
based algorithm using sensor data to predict the future location of moving objects with an associated
confidence measure. Estimation-theoretic schemes using Kalman Filters (KFs) are well established
recursive state estimation techniques where state estimates of a system are computed using the process and
observation models [18]. The recursive nature of the algorithm utilizes the system's CPU more uniformly to
provide estimates without the latency resulting from batch processing techniques. The (linear) KF is simply
a recursive estimation algorithm that provides minimum mean squared estimates of the states of a linear
system utilizing knowledge about the process and measurement dynamics, process and measurement noise

statistics subject to Gaussian assumptions and initial condition information. When these assumptions are

satisfied, the estimates provided by the Kalman filter are optimal. The extension of the linear Kalman

filtering ideas to a nonlinear system is termed extended Kalman filtering.

The strength of using an EKF is that it provides a covariance matrix that is indicative of the uncertainty in
the prediction. An EKF employs a process model to estimate the future location of the object of interest.
Since the object classification module provides the type of moving object whose position and orientation
needs to be predicted, we have envisaged a bank of EKFs for each type of classified object. In turn, this has
the added advantage of cross-corroborating the object classification itself as the uncertainty in the EKF
prediction will be an indicator of the quality of the prediction. The higher the uncertainty, the lower the
confidence in the selection of the correct set of object models and thus consequently decreasing the
confidence of the object classification. Thus, our approach combines low-level (image
segmentation/classification) and mid-level (recursive trajectory estimation) information to obtain the short-
term prediction and combines it with the cross-corroboration to work symbiotically to effectively reduce

the total uncertainty in predicting the positions and orientations of moving objects.

For short-term predictions, it was found that a separate EKF is necessary for different types of moving
objects as opposed to a separate EKF for each individual moving object. In essence, a separate prediction
equation is needed when the dynamics of the moving object significantly change. For example, multiple
variations of tracked tanks could all use the same prediction equations since the kinematics of these tanks
do not differ significantly. However, these equations could not be used for wheeled vehicles. Additionally,
a generalized prediction equation was sufficient for near-term planning until the moving object could be

classified.

3.2.2. High-level Prediction Algorithms

At the higher levels of the framework, moving object prediction needs to occur at a much lower frequency,
while allowing for a greater level of inaccuracy. At these levels, moving objects are identified as far as the

sensors can detect, and a determination is made as to which objects should be classified as “objects of

interest”. In this context, an object of interest is an object that has a possibility of affecting our path in the
time horizon in which we are planning. At this level, we use a moving object prediction approach based on
situation recognition and probabilistic prediction algorithms to predict where we expect that object to be at
various time steps into the future. Situation recognition is performed using spatio-temporal reasoning and
pattern matching with an a priori database of situations that are expected to be seen in the environment. In
these algorithms, we are typically looking at planning horizons on the order of tens of seconds into the
future with one second plan steps. At this level, we are not looking to predict the exact location of the
moving object. Instead, we are attempting to characterize the types of actions we expect the moving object
to take and the approximate location the moving object would be in if it took that action. More information

about this approach is included in the follow sections.

3.3. How the Predictions Are Used by the Planner

The original purpose for the development of the PRIDE framework was to inform a planner about the
probable location of moving objects in the environment so that the planner could make appropriate plans in
dynamic environments. Although this is not how the Moving Object Prediction algorithms are being used
in this paper, the authors feel it is important to show the original intent so as to better inform the reader of
how it is being adapted to traffic simulation. As such, in this section, we will describe how a planner uses

the outputs of the MOP algorithms. Before we do, we need to describe the algorithms’ expected output.

Each time the algorithms are executed, information, such as what is shown in each line of Table 1, is
provided for each possible future location of every pertinent moving object in the environment. The MOP
output is composed of a list of time steps in the future, external vehicle information (ID and type of the
vehicle), all the possible future locations (XPosition, YPosition), and probability information. Every
predicted location has an associated probability to represent the probability that the vehicle will be at that
location at a certain time in the future. Some of these predicted positions are not relevant due to a low

probability, so a threshold can be applied to ignore those locations under the threshold value.

It is expected that a planner will use the probability information from the MOP to determine the damage
potential of occupying a location in space at a given time. Specifically, this damage potential will be based
on the object it will encounter and the probability that the object will be there. For example, if the MOP
algorithms determine that a HMMWY (High-Mobility Multipurpose Wheeled Vehicle), which we assume
has a maximum damage potential of 200, has a 40 % chance of occupying a point in space, then the planner
may associate a damage potential (due to the presence of moving objects) of 80 (40 % of 200) when
determining the most optimal path. With this information, a planner can produce appropriate plans in the

presence of a dynamic environment.

4. APPLYING THE PRIDE FRAMEWORK TO TRAFFIC SIMULATION

Although the PRIDE framework was originally developed to inform a planner about the future position of
moving objects for the purpose of path planning and collision avoidance, we have found that the same set
of algorithms could be applied to simulating traffic patterns during on-road driving. More specifically, we
applied the situation recognition and probabilistic algorithms to determine the likely actions that a vehicle
in the environment would take when confronted with a specific situation, and then command that vehicle to
perform that action. By doing this with multiple vehicles, we are able to simulate fairly sophisticated traffic
situations in which vehicles behave in a way that is very similar to how a human would behave. Vehicles
will slow down and/or pass when approaching a stopped or slow object in their lane, they will typically
only change lanes when the next lane is clear and they are going slower than desired, they will keep a safe
following distance, etc. By providing realistic simulations of traffic situations, we are able to test the
autonomous vehicle during realistic on-road driving situations, without having to place the vehicle on a

potentially dangerous city street or highway.

Throughout the remainder of the paper, we will refer to two types of vehicles. The first is traffic vehicles

that we are trying to predict the future location of. We refer to these as TV (traffic vehicles). The second is

the autonomous vehicle that perceives these vehicles. We refer to this vehicle as AV (autonomous vehicle).

10

Whenever the term “vehicle’ is used throughout the remainder of the paper, either TV or AV will follow it

to make clear which vehicle to which we are referring.

We are initially using these algorithms in simulated environments (such as the OneSaf and AutoSim?
simulation environments) to test the planning algorithms in the presence of moving objects. Then, when the
NIST-developed Autonomous Road Driving Arenas [23] are completed, these algorithms will be used to

control “environmental” vehicles (TV) in the arena to simulate on-road traffic.

4.1. Scenario

The algorithms described in this section are used to generate realistic traffic patterns in the environment.
These traffic patterns are generated at planning horizons on the order of tens of seconds with one-second
plan steps. During the explanation of the algorithm, the following scenario will be used (Figure 1). This
scenario is composed of three vehicles (TV), two of which (A and B) are in lane L1 and moving to the
right, and the third (C) is in lane L2 and moving to the left. In this scenario, D is a static object and is

located in L1.

4.2. Implementation details
In this section, we will describe, in detail, the moving object prediction (MOP) algorithms. Figure 2
graphically shows the overall process flow.
The steps within the algorithm are:
1. For each vehicle (TV) on the road (o), the algorithm gets the current position and velocity of the
vehicle (TV) by querying external programs/sensors ().
2. For each set of possible future actions (8) (explained in Section 4.3.), the algorithm creates a set of

next possible positions and assigns an overall cost to each action based upon the cost incurred by

2 Certain commercial software and tools are identified in this paper in order to explain our research. Such
identification does not imply recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the software tools identified are necessarily the best available for the
purpose.

11

performing the action and the cost incurred based upon the vehicle’s (TV) proximity to static
objects (explained in Section 4.4.1).

3. Based upon the costs determined in Step 2, the algorithm computes the probability for each action
the vehicle (TV) may perform (g) (explained in Section 4.4.2). At this step in the scenario (Figure
1) the possible actions/probabilities for the three vehicles (TV) are shown in Figures 3A-C. The
location of each dot represents the possible location that vehicle can reach in the predefined
timeframe and the size of each dot represents the relative probability of the vehicle occupying that
location with respect to the other locations.

4. Predicted Vehicle Trajectories (PVT) (&) are built for each vehicle (TV) which will be used to
evaluate the possibility of collision with other vehicles (TV) in the environment. PVTs are vectors
that indicate the possible paths that a vehicle (TV) will take within a predetermined number of
time steps into the future. The Predicted Vehicle Trajectory notion is explained in more detail in
Section 4.5.

5. For each pair of PVTs (n), the algorithm checks if a possible collision will occur (where PVTs
intersect) and assigns a cost if collision is expected. In the scenario, for the vehicles A and C,
Figure 4 shows two PVTs that cross, indicating that a collision is possible. This is explained
further in Section 4.5.

6. In this step, the probabilities of the individual actions () are recalculated, incorporating the risk of
collision with other moving objects that was calculated in Step 5. The resultant probabilities are
shown in Figures 5A-C. Similar to Figures 3A-C, the location of each dot represents the possible
location that the vehicle can reach in the predefined timeframe and the size of each dot represents

the relative probability of the vehicle occupying that location with respect to the other locations.

The output of this loop is a list of locations with associated probabilities showing where a vehicle (TV) is
expected to be at specific times in the future (refer to Table 1). Using these probabilities, we can create
traffic patterns in one of two ways:

1. Control the vehicle (TV) to move to the location with the highest probability. For example, if

the vehicle has a 40 % chance of being at location A, a 30 % chance of being at location B, a

12

20 % chance of being at location C, and a 10% chance of being at location D, the vehicle
(TV) will always be commanded to move to location A.

2. Control the vehicle (TV) to move to a location whose likelihood is proportional to the
probability that it is expected to be there. In the example above, one approach would be to use
a random number generator. In this way, a vehicle’s (TV) movement would be closely tied to
the probabilities coming out of the moving object predictor, as opposed to always moving to

the location with the highest probability.

Independent of the approach used to control the vehicles (TV), the output of these algorithms result in
realistic traffic patterns involving one to many vehicles (TV) that can be used a basis to evaluate the

performance of autonomous vehicle (AV) within simulated on-road driving scenarios.

4.3. Actions

For the purpose of this work, actions are a discretized set of basic behaviors that a driver may perform
during on-road driving. To represent the process of predicting several time steps into the future, a series of
continuous actions (action sequences) are created a priori that are consistent with a set of preset rules.

These rules will be explained in Section 4.3.2.

4.3.1. Elementary actions

On the straight road, a vehicle (TV) can execute two types of actions. The first type of action pertains to its
acceleration profile. The possible values of this type are: Quick Acceleration (QA), Slow Acceleration
(SA), Keep the same Speed (KS), Slow Deceleration (SD), and Quick Deceleration (QD). The second type
of action pertains to the changing lane process. The vehicle (TV) can stay in the same lane or change lanes
to the right or the left. So there are: Change to the Left lane (CL), stay in the Same Lane (SL), and Change
to the Right lane (CR). Note that at this time we had only dealt with continuous road segments. At a later

date we will be addressing navigation through intersections.

13

Thus a vehicle (TV) can have up to fifteen possible actions (Figure 6). Every possible elementary action is
assumed to be able to be accomplished in one time step. Some actions may not be possible due to the
vehicle’s (TV) current velocity (for example, a vehicle (TV) moving very slowly cannot change lanes in
one second during a deceleration) or location (if a vehicle (TV) is in the rightmost lane, it can not change
lanes to the right). In this case, those actions are not considered. Referring back to Figure 1, all vehicles can
execute any acceleration profile, but all vehicles (A, B, and C) cannot change to the right lane (since they

are all on the right-most lane).

4.3.2. Action Sequences

One action is assumed to be performed in one time step. Thus when predicting n time steps in the future, n
actions will be completed. This set of n actions is referred to as an action sequence. An example of an
action sequence may be a passing maneuver, which may include the steps of accelerating in your current
lane, changing lanes to the left while continuing to accelerate, changing lanes to the right, and then
decelerating. These action sequences are made up of, among other things, acceleration profiles (QA, SA,
KS, SD, and QD) described in Section 4.3.1. Assuming that every time step is set to one second (note that
this is not a fixed value, it can be set by the user), the action sequence has to be realistic. As such, there are
some action sequences that are improbable, and thus eliminated from consideration. This elimination

procedure is performed using rules, as described below.

For now, a single rule is applied to all of the possible action sequences to generate the most realistic ones.
To evaluate these rules, we associate a value to each “acceleration profile”: 2 for QA, 1 for SA, 0 for KS, -1
for SD, and -2 for QD. The rule states that a vehicle (TV) can only switch from an action to another action
if their values differ by one. It should be noted that the inclusion of this rule prohibits “emergency stops,”
in which the acceleration change of the vehicle could change by more than one unit within one time step.
Emergency stops and the addition of other rules will be addressed as the research progresses. Example of

action sequences and their associated validity is shown in Table 2.

Again referring to Figure 1, an appropriate action sequence for Vehicle A may be a passing maneuver (if its

desired speed is greater than the speed of Vehicle B), Vehicle B would also need to perform a passing

14

maneuver to get around the obstacle, while Vehicle C would most likely perform an action sequence that

would involve constant forward velocity since there are currently no objects to impede its path.

4.4. Cost Model and Probability

4.4.1. Cost Model

All of the probabilities in the Moving Object Prediction (MOP) algorithms are based upon an underlying

cost model. The Cost Model (CM) simulates the danger that a driver would incur by performing an action

or occupying a state. These costs are being used by multiple efforts within the program that this effort is a

part of. Thus, there is value of building the probabilities directly from these costs to allow for synergy with

other efforts. These costs can be separated into two different categories.

1.

Cost representing the vehicle’s (TV) actions: This cost represents the penalties for performing
an action as a function of the amount of attention needed. For example, the changing lane action
needs more concentration than going straight in the same lane, thus the cost for changing lanes is
greater. In the same vein, a slow deceleration needs less attention than a fast deceleration, thus the
slow deceleration has a lower cost.

Cost representing possible collisions on the road: This includes collisions with static and
moving objects. Examples of static objects on the road are roadblock and barrier. Examples of
dynamic objects on the road are other vehicles. The costs associated with static or moving objects
is proportional to the danger and imminence of collision. For example, a road block at one
kilometer ahead is less dangerous than another vehicle passing at three meters ahead. In Figure 1,
Vehicle B represents a possible collision obstacle to Vehicle A and would therefore have a cost
associated with being to close to it. Similarly, Obstacle D would have a cost associated with it for

Vehicle B.

Examples of costs are shown in Table 3.

15

4.4.2. Converting Costs to Probabilities

Based on the costs associated with a given action, we can determine the probability that the vehicle (TV)

will perform that action in the following way.

The first step is to create a ratio of the cost for performing a given action to the sum of all of the costs for
performing all possible actions. This is shown in Equation 1. Note that the equation is inverted since the

probability of an action is inversely proportional to the cost of performing that action.

ratio=—2——)

We then normalize the ratio by dividing it by the sum of all of the ratios, as shown in Equation 2.

b Zratioj)

Equation 2 (Prob;) computes the normalized probability of a given action occurring as compared to all

other actions that are possible at that time.

4.4.3. Vehicle Aggressivity

Unlike other approaches that use an underlying static cost model for activities such as path planning, this
approach introduces the concept of a dynamic cost model, where the costs are vehicle (TV) specific and are
a function of what is perceived in the environment. As explained above, we associate underlying costs with

various actions and states. We then sum the costs that are associated with a specific driving maneuver and

16

use that overall cost to determine the probability that a vehicle (TV) will perform that maneuver; the higher
the cost to perform the maneuver, the lower the probability that it will occur. But different types of drivers
have different underlying costs model that affect their behavior. A very aggressive driver will have a lower
cost for changing lanes, changing his/her velocity quickly, following another vehicle too closely, not
driving in the right-most lane, etc. Conversely, a very conservative driver will have much higher costs for

these actions.

In our approach, we have set up two aggressivity profiles: aggressive and passive. Since we are controlling
the traffic, we pre-specify the aggressivity of each driver on the road before the system starts to ensure that
the vehicle (TV) behaves in a way that is in line with its personality. The aggressivity of the vehicle (TV)

can be modified as the algorithms are run to cause changing behaviors.

When these algorithms are used for moving object prediction (i.e., when we are observing vehicles (TV)
that we cannot control), the aggressivity of the driver can be “learned” based on observations (e.g., how
many times the vehicle (TV) changes lanes, its average speed compared to the speed limit, following
distance from other vehicles, etc.). Based on this information, an aggressivity profile can be assigned to (or
changed for) the vehicle (TV) as the algorithms run. The initial aggressivity of other vehicles (TV) on the
road can be set to either aggressive or passive. Determining aggressivity of other vehicles (TV) is a

research area that is only conceptual at this point and will be further explored as the research progresses.

Although we currently have only two aggressivity profiles, (aggressive and passive), we foresee more of a
continuous scale in the future, where the costs of the actions in the profiles would be closely tied to the
specific actions that were perceived of other vehicles (TV). For example, if we perceive that a vehicle (TV)
has a tendency to follow the vehicle in front of it very closely but does not change lanes very often, we will
increase the cost of changing lanes (thus decreasing the probability that it will occur) but decrease the cost

associated with following distance for that vehicle (TV).

17

4.5. Predicted Vehicle Trajectory

A Predicted Vehicle Trajectory (PVT) represents the possible movements of a vehicle (TV) throughout the
time period being analyzed. The PVT is represented by a trajectory. Although current efforts do not
account for the dimensions of the vehicle (TV) (i.e., we treat the vehicle (TV) as a point in space as
opposed to a solid object), the PVT concept could easily be extended to account for the width and length of
the vehicle (TV). This has not been a point of emphasis thus far in the work since the “buffer zone”
surrounding the vehicle (TV) (the area around the vehicle in which a cost is incurred if the controlled
vehicle (TV) enters it) subsumes the dimensions of the vehicle (TV). This will be the topic of future

research.

The PVT is built from the origin position (X;p, yie, tp=0) at time=0 to the predicted position (Xpp, Ypp,
tpp=tpreq) Where tprq is the predetermined time in the future for the prediction process. Also contained within

the PVT is the action-cost and action-probability information.

The PVT is used to determine if potential collision will occur, as shown in Figure 4. Because a PVT
represents a trajectory of one predicted position (initial to predicted), to obtain the collision information

between two vehicles (TV), the possible intersection between two PVT has to be checked.

Thus, no collision occurs when two PVTs are not crossing. But when two PVTs do cross, there is a
probable collision (Figure 7). When two PVTSs cross, it is important to know when (where) they cross. This

information can be obtained by using a parametrization of each PVT.

The parametrization is:

X1(Ug) = Xpp1 Uy + Xpp1 (1-Uy)
where u; € [0, 1] 3)
Y1(Ug) = Yep1 Ug +Yipr (1-Uy)

X2(Uz) = Xppz Uz + Xipz2 (1-Up) where u; € [0, 1] 4

18

Ya(Uz) = Ypp2 Uz + Yip (1-Up)

where u; and u, are the parameters of each PVT.

The two equations (3 and (4) create a linear system which, after using the Cramer’s Theorem, can be used

to determine u; and uy:

So the two vehicles (TV) will cross each other at two different times (u; tpreq) for the first vehicle (TV) and
(up tpreg) for the second vehicle (TV). For a small difference, the collision is probable or certain.
Conversely, for a large difference, the collision is improbable. Thus if the PVTs cross and the difference of

time is less than a predetermined time (T), we use Equation 6 to determine the collision cost:

CollisionCost = CO (T - (tpreq [U1-U2)) (6)

where CO is the predetermined maximum cost that can occur when colliding with a specific object (Table

2) and T is the predetermined time difference in which a cost for collision will be incurred.

5. APPLYING TRAFFIC SIMULATION TO PERFORMANCE METRICS

Now that we’ve described how we can simulate traffic patterns, we will discuss how this could be used to
associate performance metrics to an autonomous vehicle (AV). In evaluating how an autonomous vehicle
(AV) is performing during on-road driving, one needs the ability to test that vehicle (AV) in various driving
situations. Those situations are a function of the environment (e.g., winding roads, steep slopes, traffic
signals, intersections), weather conditions (e.g., rain, fog, ice on the roadway), and static and dynamic
objects in the environment (e.g., traffic barrels, pedestrians, other vehicles (TV)). The traffic simulator
allows us the ability to dynamically change information about static and dynamic objects in the
environment in order to introduce a variety of situations against which we can evaluate the autonomous

vehicle (AV).

19

The traffic simulator allows one to have repeatable, realistic traffic patterns. As such, it is able to place two
different autonomous vehicles (AV) in an identical traffic environment to evaluate how each performs. If
the two autonomous vehicles (AV) behaved in identical fashion, the entire flow of traffic would be
identical. Conversely, if the two autonomous vehicles’ (AV) behaviors differed in any way, the flow of
traffic would most likely differ (since other vehicles (TV) in the traffic pattern may be reacting to the
actions of the autonomous vehicle (AV)). In using the traffic simulator to assign performance metrics,
levels of difficulty are associated with different traffic patterns, based on the number of vehicles (TV) in
the traffic, location of the vehicles (TV) on the road, types of vehicles (TV) on the road (e.g., buses, taxis,
police cars), and the aggressivity of other vehicles (TV). The traffic simulator allows one to create
situations where an accident among a pair of traffic vehicles (TV) is imminent. The autonomous vehicle

(AV) is then evaluated based upon its ability to predict this accident and take precautions in time.

Metrics are assigned to the autonomous vehicle’s (AV) performance based on a number of criteria,
including proximity to other vehicles (TV) (within buffer distance), staying within the speed limit, number

of major velocity and acceleration changes, number of lane changes, obeying traffic signs and signals, etc.

6. EXPERIMENTAL RESULTS

The situation-based probabilistic prediction approach has been implemented in the AutoSim simulation
package developed by Advanced Technology Research Corporation. AutoSim is a high-fidelity simulation
tool which models details about road networks, including individual lanes, lane markings, intersections,
legal intersection traversibility, etc. Using this package, we have simulated typical traffic situations (e.g.,
multiple cars negotiating around obstacles in the roadway, bi-directional opposing traffic, etc. and have
predicted the future location of individual vehicles (TV) on the roadway based upon the prediction of

where other vehicles (TV) are expected to be (Figure 8).

20

At the point this paper was written, we have simulated numerous driving situations and have used eleven
costs to determine the probabilities of one action over another. In all driving situations, there were
anywhere from one to three vehicles and obstacles placed at different random locations on the roadway. In
all cases, there were no “road blocks”, meaning that there was always at least one lane on the roadway that
would allow a vehicle to pass. The initial velocity of the vehicles varied from being at rest to 30 m/s.
Current costs are incurred based on: 1) proximity to other objects in the environment as a function of the
necessary stopping distance, 2) two costs associated with exceeding or going below the speed limit by a
given threshold, 3) changing lanes, 4) not being in the rightmost lane, 5) five costs associated with
acceleration profiles (constant velocity, slowly accelerating and decelerating, rapidly accelerating or
decelerating), and 6) changing lanes where double yellow lines in the road exist.. It should be emphasized
that costs are not static numbers. Using these costs, we were able to predict up to ten seconds into the future
at a rate of five predictions per second. Determining the costs that are appropriate for a given aggressivity
of a driver is an art more than a science. The ability of a system to adjust the costs as a function of
perceptions of vehicle’s behavior is expected to have dramatic effects of determining and refining the costs,

but this has not been implemented yet.

In the experiments, it was interesting to see how the vehicles (TV) performed when the “action sequences”
(as described in Section 4.3.2) were varied with respect to time. As a reminder, the action sequence is the
amount of time that it would take the vehicle to perform a driving maneuver (e.g., changing lanes). For
most of these experiments, a passing maneuver, as described in Section 4.3.2, was used as the action
sequence to be evaluated. When we set this time to a longer duration (e.g., 7 s), the vehicle was very slow
to respond to unexpected events (e.g., a vehicle pulling into its lane quickly), which cause, in some cases,
near collisions. Conversely, when the time for the action sequence was set to a shorter time (e.g., 2 s), the
vehicle becomes jerky and could not make up its mind. For example, it would start a lane change and then
quickly return to the original lane. Four seconds appears to be a good middle-ground to create realistic
traffic patterns. The existence of these realistic traffic patterns is important to be able to truly assess the

performance of autonomous vehicles in on-road driving scenarios.

21

Future work will create different action sequence timeframes for different types of driving maneuvers.

The introduction of action sequences into the prediction algorithms have resulted in dramatic increases in
performance with respect to time. Before the concept of action sequences was introduced, we were able to
predict up to 5 seconds into the future for two vehicles at a rate of two predictions per second. Once actions
sequences were introduced (along with the rules which state which action sequences are valid and invalid,
as described in Section 4.3.2.), we are now able to predict 10 s into the future with two vehicles at a rate of

10 predictions per second.

All experiments described in the section were performed on a Pentium 4 CPU machine with a 1.8 GHz

CPU and 512 MBytes of memory.

7. CONCLUSIONS AND FURTHER WORK

In this paper, we have described the PRIDE framework, which was developed to perform moving object
prediction for autonomous ground vehicles (AV). PRIDE is based upon a multi-resolutional, hierarchical
approach that incorporates multiple prediction algorithms into a single, unifying framework. The lower
levels of the framework (not discussed in detail in the paper) utilize estimation-theoretic short-term
predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition
with an underlying cost model. We showed the results achieved from applying PRIDE in a simulated

environment.

We have then shown how PRIDE can be extended to simulate traffic patterns during on-road navigation.
The PRIDE algorithms are used to provide the underlying logic to control vehicles (TV) in the
environment, thus generating a realistic flow of traffic. We use the prediction algorithms within PRIDE to
determine the probability that a vehicle (TV) will exhibit a certain behavior given a set of environmental
conditions, and then command the vehicle (TV) to perform the action which has the greatest probability.
By doing this, we are able to create realistic, repeatable, and non-scripted traffic patterns that closely mimic

the types of traffic flow expected to be encountered during on-road driving.

22

We then explored how the PRIDE-based traffic control algorithms can be applied to performance
evaluation of autonomous vehicles (AV). Through the use of repeatable and realistic traffic flow
simulation, one is able to evaluate the performance of an autonomous vehicle (AV) in an on-road driving
scenario without the risk involved with introducing the vehicle (AV) into a potentially dangerous roadway
situation. In addition, by varying a single vehicle’s (TV) parameters (e.g. aggressivity, speed, location) with

the traffic flow, we can show how the entire traffic pattern is affected.

The goal of this paper was to describe how the work to date in moving object prediction could contribute to
performance metrics for autonomous systems. Though the algorithms described in this paper have been
developed and implemented, there is still much work to be accomplished. For one, the metrics that should
be applied when evaluating an autonomous system in the presence of traffic situations being generated by
these algorithms need to be further explored. This will be the topic of future work and will be realized in
the NIST Autonomous Road Driving Arenas [23] as a way to assess the performance of autonomous
vehicles being tested within these arenas. Also, this set of algorithms has been shown to work successfully

on straight roads, but has not been fully tested on intersections. This will also be a topic of future research.

Another area of future research will involve the incorporation of intent into the predictions. For example, if
one could recognize that the “intent” of a vehicle was to get off at an upcoming exit and it would have to
move over three lanes to get to the exit ramp, then the system could dynamically adjust the costs to align
the possible future actions with the intent of the vehicle. For example, in this scenario, one could adjust the

cost of changing lanes to have a very low cost, thus increasing the probability that this will happen.

There is also the need to ensure that the outcome of these prediction algorithms truly represent the expected
behavior of drivers in those situations. We plan on enacting the driving situations that we are simulating
and compare the reaction of the physical drivers with the predictions from our algorithms to determine the
accuracy of the predictions. This will be performed once the algorithms are fully tested in a simulated

environment.

23

ACKNOWLEGEMENT

This work was supported by the Defense Advanced Research Projects Agency (DARPA) Mobile

Autonomous Robot Software (MARS) program (PM. D. Gage) and the Army Research Lab (ARL) (PM. C.

Shoemaker).
REFERENCES

1. "The DARPA Grand Challenge," http://www.darpa.mil/grandchallenge/index.html, 2005.

2. Albus, J., "The NIST Real-time Control System (RCS): An Application Survey," Proceedings of the
1995 AAAI Spring Symposium Series, 1995.

3. Albus, J. and et al, "4D/RCS Version 2.0: A Reference Model Architecture for Unmanned Vehicle
Systems,” NISTIR 6910, National Institute of Standards and Technology, Gaithersburg, MD, 2002.

4. Albus, J. S., "RCS: A Reference Model Architecture for Intelligent Control," Computer, Vol. 25,
No. 5, 1992, pp. 56-59.

5. Balakirsky, S., A Framework for Planning with Incrementally Created Graphs in Attributed
Problem Spaces, 10S Press, Berlin, 2003.

6. Bessiére, P., Ahuactzin, J.-M., Talbi, E.-G., and Mazer, E., "The 'Ariadne's Claw' Algorithm: Global
Planning with Local Methods,” Proceedings of the 1993 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vol. 2, 1993, pp. 1373-1380.

7. Champion, A., Espie, S., and Auberlet, J., "Behavioral Road Traffic Simulation with ARCHISM,"
Proceedings of the Summer Computer Simulation Conference, USA, 2001.

8. Dickmanns, E. D., "An Expectation-Based Multi-Focal Saccadic (EMS) Vision System for Vehicle
Guidance," Proceedings of the 9th International Symposium on Robotics Research (ISRR'99), Salt
Lake City, 1999.

9. Dickmanns, E. D., "The development of machine vision for road vehicles in the last decade,"
Proceedings of the Int. Symp. on Intelligent Vehicles '02, Versailles, 2002.

10. Elnager, A. and Gupta, K., "Motion Prediction of Moving Objects Based on AutoRegressive
Model," IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans, Vol.
28, No. 6, 1998, pp. 803-810.

11. Espie, S., Saad, F., and Schnetler, B., "Microscopic traffic simulation and driver behaviro modeling:

the ARCHISM project," Proceedings of the Strategic Highway Research Program and Traffic Safety
on Two Continents, Lille, France, 1994,

24

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Ferguson, I. A., "TouringMachines: An Architecture for Dynamic, Rational Mobile Agents,"”
Unpublished PhD Thesis, University of Cambridge, UK, 1992.

Firby, J., "Architecture, Representation, and Integration: An Example from Robot Navigation,"
Proceedings of the 1994 AAAI Fall Symposium Series Workshop on the Control of the Physical
World by Intelligent Agents, New Orleans, LA, 1994.

Gueting, R. H., "A Foundation for Representing and Querying Moving Objects," ACM Transactions
on Database Systems (TODS), Vol. 25, No. 1, 2000, pp. 1-42.

Haag, M. and Nagel, H.-H., "Incremental recognition og traffic situations from video image
sequences,” Image and Vision Computing, Vol. 18, 2000, pp. 137-153.

Hoseini, S., Vaziri, M., and Shafahi, Y., "Combination of Car Following and Lane Changing
Models as a Drivers' Optimization Process," Applications of Advanced Technologies in
Transportation Engineering, Vol. 0-7844-0730-4, 2004, pp. 601-605.

Kallman, M. and Mataric, M., "Motion Planning Using Dynamic Roadmaps," Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), New Orleans, LA, 2004.

Kalman, R., "A New Approach to Linear Filtering and Prediction Problems," Transactions of the
ASME Journal of Basic Engineering, VVol. 82, No. Series D, 1960, pp. 35-45.

Kindel, R., Hsu, D., Latombe, J.-C., and Rock, S., "Kinodynamic Motion Planning Amidst Moving
Obstacles," Proceedings of the 2000 IEEE International Conference on Robotics & Automation,
Vol. 1, 2000, pp. 537-543.

Moravec, H., "Sensor Fusion in Certainty Grids for Mobile Robots," Al Magazine, Vol. 9, No. 2,
1988, pp. 61-74.

Ratering, S. and Gini, M., "Navigation Amidst Unknown Moving Obstacles," Autonomous Robots,
Vol. 1, No. 2, 1995, pp. 149-165.

Schlenoff, C., Madhavan, R., and Barbera, T., "A Hierarchical, Multi-Resolutional Moving Object
Prediction Approach for Autonomous On-Road Driving," Proceedings of the 2004 ICRA
Conference, 2004, pp. 1956-1961.

Scrapper, C., Balakirsky, S., and Weiss, B., "Autonomous Road Driving Arenas for Performance
Evaluation," Proceedings of the Performance Metrics for Intelligent Systems (PerMIS) 2004
workshop, 2004.

Sharma, R., "Locally Efficient Path Planning in an Uncertain, Dynamic Environment using a
Probability Model," IEEE Transactions on Robotics and Automation, Vol. 8, No. 1, 2003, pp. 105-
110.

Shoemaker, C. and Bornstein, J. A., "Overview of the Demo Il UGV Program," Proceedings of the
SPIE Robotic and Semi-Robotic Ground Vehicle Technology Conference, Vol. 3366, 1998, pp. 202-
211.

Singhal, A., Issues in Autonomous Mobile Robot Navigation, Computer Science Dept, U. of
Rochester 1997.

Williams, B. and Kim, P., "Model-based Reactive Programming of Cooperative Vehicles for Mars

Exploration,"” Proceedings of the Int. Symp. on Artificial Intelligence, Robotics and Automation in
Space, St. Hubert, Canada, 2001.

25

28. Zhu, Q., "Hidden Markov Model for Dynamic Obstacle Avoidance of Mobile Robot Navigation,"
IEEE Transactions on Robotics and Automation, Vol. 7, No. 3, 1991, pp. 390-396.

26

TABLES

Time Step In The Vehicle ID Vehicle Type ID Xposition Yposition Probability

Future [m] [m] [%0]
1 10 2 10.5 115 40
1 10 2 115 115 20
1 10 2 10.5 10.5 30
1 10 2 115 105 10
1 11 2 105 12.0 30

Table 1. MOP Qutput

Actions Validity Description

SD sD SD SD QD Valid

QD QD QA QA QA Invalid QD to QA illegal

QA QA SA SA KS Valid

Table 2. Example of valid and invalid Set of action

28

Action Cost

Quick Acceleration (QA) 3

Slow Acceleration (SA) 2

Keep the same Speed (KS) 1

Slow Deceleration (SD) 2

Quick Deceleration (QD) 4

Changing Lane (CL, CR) 30

Opposite direction 500

Collision (CO) 1000

Table 3. Example Cost Model Values

29

F

g
F

9
F

9
Fi

g
Fi

g
F

g
F

9
F

9
Fi

g
F

g
F

g
F

9

FIGURE CAPTIONS

. 1. The Scenario

. 2. The Moving Object Prediction Process
. 3A. Vehicle A’s Actions-Probabilities
. 3B. Vehicle B’s Actions-Probabilities
. 3C. Vehicle C’s Actions-Probabilities
. 4. Possible Collision between A and C
. 5A. Vehicle A’s Final Probability

. 5B. Vehicle B’s Final Probability

. 5C. Vehicle C’s Final Probability

. 6. Vehicle Actions

. 7. Crossing PVT

. 8. Two Vehicles passing obstacles

30

FIGURES

31

|2 | For each vehicle

| () Get Carrent Position

¥

{1 For each action sequence

Comgpnte &1 Whees
Aecelerahons Deceleratons
Changing lares

Y

| Cost Action |

v

| CostStatic Chstacle |

| () Probabilities Action |

k.
| () Build Predicted Vehicle Trajectory |

L

(n) For each Predicied Vehicle Trajeciory

(Probable Vel

icle Collision

yes
¥

[CostCollision

Y

[(9) Final Probabilities

32

33

34

35

QL

Sh

)

3D

oD

| » |
R I B B
) !
' !
B | ¢ | !
& ..]
.__ 1 _ _ ____ ___.
" . '
ol
.__ .__...‘ * _“_ ____ ____
e |
!
___J..____.. | _q_ﬁ_q_q

[k
e

36

IF1

FF1

1P

37

38

